Research Article

Dispersal of Trichogramma brassicae in tomato field

Atena Mahrughan ${ }^{1}$, Jalal Shirazi ${ }^{\mathbf{2}^{*}}$, Masoud Amir Maafi ${ }^{3}$ and Hemmat Dadpour ${ }^{4}$
1. Entomology Department, Agriculture College, Islamic Azad University, Garmsar Branch, Iran.
2. Biological Control Research Department, Iranian Research Institute of Plant Protection, Tehran, Iran.
3. Sunn Pest Research Department, Iranian Research Institute of Plant Protection, Tehran, Iran.
4. Amol Biocontrol Lab, Biocontrol Department, Iranian Research Institute of Plant Protection, Amol, Iran.

Abstract

A study was carried out to map dispersal of Trichogramma brassicae Bezd. on tomato in a 0.5 ha field. First, 1, 5, 10, 15, 20 and 25 meter distances from the central point of the field were marked in form of squares. On each square, 8 points were selected and a wooden stake of 1.5 m length was vertically secured into the soil at each point equal to plant height and bearing a yellow sticky trap (YST, $10 \times 20 \mathrm{~cm}$) on the top. Moreover, three egg batches each containing ~200 fresh Sitotroga cerealella Oliv. eggs on cardboards (SEC) were stapled on top leaf of three plants around the wooden stake arranged in a 0.75 m arch. Evaluation was done two days before and 2, 4, 6 and 8 days after a release of 50000 newly emerged T. brassicae ($\sim 1: 1$ Male:Famale) from the central point. The number of T. brassicae trapped by YST, and number of parasitised eggs on SEC were counted under a stereomicroscope and noted down. The coefficient of fitting YST data to the model $\left(R^{2}\right)$ for all 4 sampling dates was as high as 86%. The average diffusion coefficient was equal to $16.89 \mathrm{~m}^{2} /$ day for four times sampling. In general, the distance encompassing 98% of trapped T. brassicae predicted by the model was up to maximum 29.9 m from the central point 8 days after the release. The mean percent parasitism was $44.7,5.5,5$ and 0.9 per SEC during 2, 4, 6 and 8 days after release, respectively. It is concluded that, the farther the distance from the releasing point and the longer the time elapsed after release, the less number of wasps were recaptured. Therefore, multiple releasing points are required to achieve even distribution and enough population of parasitoids in the field.

Keywords: biological control, Helicoverpa armigera, augmentative release, diffusion model

Introduction

Biological control has been a unique way to avoid pesticides hazards on human and animal health and environment (Bale et al., 2008). It is actually the development of a natural way to employ parasitoids, predators and antagonistic

[^0]microbial agents. One of the worldwide used biocontrol agents has been Trichogramma species (Li, 1982). Based on a new survey, there are 11 species of the wasp defined in Iran (Ebrahimi, 1999), amongst which, T. brassicae Bezd. is commonly mass reared and released in rice, corn, tomato, cotton and soybean fields to control serious stem, fruit, boll and pod borers (Shirazi et al., 2010).
T. brassicae, being the dominant species in Iran (Ebrahimi, 1999), has been the core of biocontrol reseasrches including evaluation
against Helicoverpa armigera on tomato (Shirazi et al., 2010). Despite the vast published material on Trichogramma, there are rare studies to point the basic behavioral and ecological aspects of the wasp (Hassan, 1994). For example, knowing the dispersal potential of the wasp would help the prediction of the pest control after a mass release (Smith, 1996; Orr et al., 2000). Some studies have proved a great area of dispersal for Trichogramma sp. after only one release from 1 point in the field (Wright et al., 2001; Wang et al., 1999). However, Shirazi et al. (2010) and Pezeshk et al. (2010) have reported a reversed relationship between plant area and searching ability and dispersal of T. brassicae in corn.

Rudd and Gandour (1985) introduced a model for dispersal estimation of an insect in the field (diffusion model). Chapman (2007) employed the model to study the dispersal of T. ostriniae (Peng \& Chen) in the field to optimize its application in bell pepper for Ostrinia nubilalis (Hub) control. Similarly, the present study was undertaken to find out the direction, distance, area and timing of T. brassicae dispersal in tomato field after releasing from a central point. The information may improve biological control programs against tomato fruit borer in Iran.

Materials and Methods

Parasitoid preparation: The T. brassicae population was taken as about 5000 parasitized Sitotroga cerealella Oliv. eggs from Biological Control Research Dept. (Amol Lab), Iranian Research Institute of Plant Protection. It had been reared for 13 generations before. Then a colony was established at $25 \pm 1^{\circ} \mathrm{C}, 65 \pm 5 \%$ RH and $16: 8 \mathrm{~h}$: D. The wasp was reared for 4 generations on the same host and quality control test including purity of the species, longevity, fecundity, percent emergence, percent mortality and malformed adults were measured before release.

Field preparation: Sterling cultivar of tomato was transplanted in $5000 \mathrm{~m}^{2}$ around mid May 2013. Plants were 30 cm apart on rows in furrow irrigation system (ridges with 120 cm width and furrows with 80 cm width) with 7 days interval.

There was no tomato field around the experimental area. Later on, $2500 \mathrm{~m}^{2}$ was selected in the center of the field. From the central point, squares with $1,5,10,15,20$ and 25 m sides were marked off. On the periphery of each square, 8 equidistant points (4 on the corners and 4 in the middle of the sides) were marked and a wooden stick (1.5 m long) was secured into the soil at each point equal to plant height and bearing a yellow sticky trap (YST, $10 \times 20 \mathrm{~cm}$) on the top. Moreover, three egg cards each containing ~ 200 fresh S. cerealella eggs (SEC) were stapled on top leaf of 3 plants around the wooden stick arranged in a 0.75 m arch. Points were numbered clockwise 1 to 8 from west (1) to southwest (8). Similarly, letters from A to F were assigned to each square from the largest to the smallest one (Fig. 1).

Figure 1 Squares: white $=$ Release center, red $=1 \times 1$ m , yellow $=5 \times 5 \mathrm{~m}$, green $=10 \times 10$, purple $=15 \times 15$ m , blue $=20 \times 20 \mathrm{~m}$ and orange $=25 \times 25 \mathrm{~m}$. Distance from release center to outer square on mid wall of all directions equals to $1,5,10,15,20,25 \mathrm{~m}$ and on all 4 corners equals to $1.40,7,14.10,21.20,28.30$ and 35.30 m . A1 is located on the mid wall of 25×25 square at west direction and F 8 on the north west of 1×1 square.

Experiment implementation: Evaluation was done two days before (for natural parasitism estimation) and 2, 4, 6 and 8 days after a release of 50000 newly emerged T. brassicae with $\sim 1: 1$ F: M sex ratio. At each evaluation interval, new YST and SEC were replaced and old ones were taken to lab for further examination. The number
of T. brassicae trapped by YST, and number of parasitised eggs on SEC were counted under a Stereomicroscope and noted down.

Statistical method: The data was normalized $(\log 10(x+1))$ and fitted to a model proposed by Rudd and Gandour (1985) using SAS
software (SAS, ver. 9.1). Table 1 has summarized formulae and equations used in this study. Meteorological statistics were taken from a nearby local synoptic weather station. Graphs were prepared using Excel software (MS Office, 2007).

Table 1 Formulae and equations used in this study (Rudd and Gandour 1985).

No	Formula /Equation	Consideration
1	$\frac{\partial y}{\partial t}=\frac{D \partial^{2} y}{\partial x^{2}}-m y$	Diffusion Model which considers only 1 dimension in the field for ease of calculations. It calculates changes in number of insects (y) within certain distance (x) during time after release (t) from a central point. Two important postulates: a) Wasps move random and b) There is no directed preference for the released insects.
2	$y(x, t)=y_{0} \frac{e^{m t}-\left(\frac{x^{2}}{4 D t}\right.}{2 \sqrt{\pi D t}}$	When there is no external force for wasp movement in the field, then, y_{0} is the number of released population. The rest is as above formula.
3	$y(x, t)=y \frac{e^{m r} e^{-\left(\frac{x-v t)^{2}}{\Delta D t}\right.}}{2 \sqrt{\pi D t}}$	If there is effective wind equation 2 is modified as 3 .
4	$y_{i}=A e^{-B x_{i}^{2}}$	To estimate the parameters of the model, first all captured wasps on YST from all directions and distances are arranged in an excel sheet. The NLin proc is used in SAS to fit the data to the model. In equation $4,\left(y_{i}\right)$ is the number of dispersed individuals at the distance of $(x i)$. Constants A and B are the estimation of individual at the distance $x=0$ and the ratio of density decrement of the wasp population with the distance from release point.
5	$D=\frac{1}{4 B t}$	Based on information obtained from equation 4, the dispersal coefficient (D) is calculated.
6	$\chi 98=2^{\sqrt{4 D t}}$	As the dispersal variance is equal to $4 D t$, then, the distance encompassing 98% of population is calculated through formula 6.
7	$m=\frac{-\ln \left(\frac{2 A \sqrt{\pi D E}}{\gamma \mathrm{U}}\right)}{t}$	Referring to equation 2, the mortality or migration can be achieved as m.
8	$y(t)=y_{0} \mathrm{e}^{-m t}$	The amount of the wasp remained in the field (yt) based on m (7) will be predicted.
9	$r^{2}=1-\frac{S S e}{S S T}$	r^{2} is determination coefficient obtained as 1 deducted from sum square of error over total sum square.

Results

Quality control statistics of the population employed in the study have been summarized in Table 2. It is quite clear that the important biological attributes of T. brassicae used in the experiment including mortality (less than 15% within 4 days after emergence), sex ratio ($>50 \%$ female) and adult emergence ($>90 \%$) were above standards defined for the mass produced population of the species in Iran (Table 2).

The SEC did not contain any parasitisation within 2 days at the time the experiment was
carried out. Therefore, it is concluded that all counted wasps on YST belonged to the population released in the field. Table 3 has depicted the results obtained by fitting data to the equation 4 in Table 1.

The data was normalized through $\log 10(x+1)$. The goodness of fit for first sampling date (2 days after release) was relatively high ($>72 \%$) and very high at second and third sampling dates (90 and 90%, respectively). However, the determination coefficient of pooled data was acceptable $\left(r^{2}=\right.$ 0.86) which proved the good fit of data to the model (Table 3). Similarly, the diffusion
coefficient (D) was 43.5540 m /day and gradually declined to the end of experiment to $15.39 \mathrm{~m} /$ day. Generally, the average dispersal was determined as $16.89 \mathrm{~m} /$ day (Table 3).

The distance encompassing 98% of dispersed T. brassicae population except in the first sampling date $(2.1324 \mathrm{~m})$, was somewhat equal in the second, third and fourth counts (47, 46 and 44 m , respectively). Anyhow, the mean distance was equal to 30 m for all 4 sampling dates (Table 3). Adding to that, the density of remaining population in the field at each sampling date $\left(Y_{t}\right)$ was a very small value compared with the released density. However, it was 530.92 wasps as average of all four sampling dates recorded (Table 3).

The relationship between 6 distances and number of wasps recaptured by YST from release point for 8 different directions were bar charted in Fig. 2. As it is shown, there was a uniform dispersal of the wasp from $1^{\text {st }}$ (except for W direction which had unusually high counts of wasps) to $4^{\text {th }}$ distance (1 to 15 m) with somehow increasing trend in all directions. Beyond 15 meters, sporadic counts were recorded irrelevant to the geographical directions (Fig. 2).

The information obtained from SEC for all distances with respect to sampling dates and 8
directions was compiled in Table 4. Considering the mean parasitisation, it was demonstrated that total number of parasitized eggs counted on SEC decreased as distance increased from release point. It was $44.77,5.5$, 5 and 0.9 parasitised eggs/SEC for $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ sampling dates of all 8 directions on each date, respectively (Table 4).

The wind as the most important meteorological parameter effective on dispersal was on average 10 m / s during the 8 days of experiment.

Table 2 Quality control statistics of Trichogramma brassicae measured at $25 \pm 1^{\circ} \mathrm{C}, 65 \pm 5 \mathrm{RH}$ and 16 : 8 h L: D.

Attribute	Unit	Observed	Standard *
Emergence rate	\%	90.6	>85
Sex ratio	\% females	50.6	>50
Adult abnormality	\%	4.3	<5
Fecundity	eggs/female/ life span	40.2	>40
Mortality within 4 days	\%	15.0	<20

*(Courtesy of Anonymous, 2004).

Table 3 Parameters and coefficients calculated by fitting number of recaptured Trichogramma brassicae by yellow sticky traps (YST) to diffusion model (Rudd and Gandour, 1985) after release of 50000 adults from a central point in tomato field.

Sampling date	t^{a} (day)	A^{b}	B^{b}	$R^{2^{*}}$	$D^{\mathrm{c}} \mathrm{m} /$ day $)$	$\mathrm{X}_{98 \%}{ }^{\mathrm{d}}$	m^{e} (no.)	$Y_{\mathrm{t}}^{\mathrm{f}}(\mathrm{no})$.
$1^{\text {st }}$	2	68.6803	0.87960	0.72	43.5540	2.13249	2.97703	129.76
$2^{\text {nd }}$	4	3.0667	0.00178	0.90	39.8089	47.40455	1.49373	128.80
$3^{\text {rd }}$	6	2.4746	0.00179	0.91	23.5404	46.88072	1.03037	103.06
$4^{\text {th }}$	8	1.4445	0.00201	0.85	15.3940	44.60997	0.84673	57.16
Mean of pooled data	20.0989	0.00450	0.86	16.8918	29.81424	0.56814	530.92	

[^1]\qquad

Figure 2 Cumulative number of Trichogramma brassicae counted on yellow sticky traps at different direction and distances after releasing 50000 adults from a central point and 4 times sampling in tomato field.

Table 4 Mean number of parasitised eggs of Sitotroga cerealella presented to 50000 Trichogramma brassicae released from a central point and sampled after $2,4,6$, and 8 days in tomato field.

Sampling dates	Time elapsed (days)	Directions								Total average
		N	NE	E	SE	S	SW	W	NW	
$1^{\text {st }}$	2	0	9.3	8.0	0	10.0	2.3	5.0	10.2	44.8
$2^{\text {nd }}$	4	1.6	0.6	0.6	0.6	0.3	0.9	0.9	0	5.5
$3^{\text {rd }}$	6	2.3	0	0.3	0.9	0	0.9	0.3	0.3	5.0
$4^{\text {th }}$	8	0.3	0	0	0	0.3	0	0	0.3	0.9

Discussion

One of the important considerations for Trichogramma sp. application at field level would be the availability of information on its dispersal after release which depends on different parameters (Wang et al., 1997; Kuhar et al., 2004; Hoffmann et al., 2002).

For modeling the dispersal of an insect based on the idea of Rudd and Gandour (1985), there are some assumptions to be made namely, that insects move randomly, no external force could affect their behavior and they would not interfere with each other. Therefore, adding a linear approach to them for facilitating the calculations and considering the one dimension of insect movement (only horizontal) in the field has justified the employment of Diffusion Model in
insect dispersal studies (Rudd and Gandour, 1985; Chapman, 2007; Kuhar et al., 2004).

Obtained dispersal coefficient (D) proved a decline in T. brassicae density with respect to time elapsed after release and distances from release point. It is believed that this coefficient varies among insects depending on insect species, gender and behavior in the field (Rudd and Gandour, 1985). Findings of the present study on D is in accordance with what Chapman (2007) reported while studying T. ostriniae dispersal in sweet potato. Moreover, it was demonstrated that during the first 2 days after release, wasps dispersed very slowly ($X_{98 \%} \sim 2 \mathrm{~m}$). The same finding was verified by Chapman (2007) for the first 48 h sampling. This could be due to time required for the wasps to get accustomed to new environment. In general, based on calculations of recaptured number of 50000 wasps released from

1 point in $2500 \mathrm{~m}^{2}$, about 98% of the population was dispersed in $900 \mathrm{~m}^{2}$ of the area (36% of the total arena) which is at par with research of Greatti and Zandigiacomo (1995), Wright et al. (2001) and Fournier and Boivin (2000), respectively, on T. brassicae, T. ostriniae and T. pretiosum dispersal in the field.

From another point of view, considering the approach in T. brassicae mass release for pest control, longevity of the parasitoid would play an important role in its uniform dispersal with enough density throughout the target field. Although the strain of T. brassicae used in our experiment passed the QC criteria of acceptable standards, the field condition may impose higher disappearance (mortality/emigration) to the wasp (Attaran, 2002; Wang and Ferro. 1998). Results on m and Y_{t} parameters obtained in this research have been emphasized by other scientists (Kanour and Burbutis 1984; Burbutis et al., 1977; Shirazi et al., 2010).

The effect of wind speed on Trichogramma dispersal efficiency has been debated by different researchers. If there is wind around $5 \mathrm{~m} / \mathrm{s}, T$. pretiosum and T. evanescens would change their movement same to the wind direction (downwind) (Fournier and Boivin, 2000). Moreover, the reduction in pest parasitism was observed upwind in the field (Greatti and Znadigiacomo, 1995; Hsiao, 1981; Smith, 1988; Fournier and Boivin, 2000). However, with the dominant south west wind in the region with around $10 \mathrm{~m} / \mathrm{s}$ during the field test, except for high counts at 1 m distance in west point, there was more or less uniform dispersal based on counts in all directions and distances. The similar conclusion applies to host egg parasitisation as it was higher upwind (1 and 5 m distances) compared with that of downwind distances.

Finally it could be concluded that one release point would not be enough for effective dispersal of T. brassicae in a certain area of tomato field. Adding to that, the distance encompassing 98% of trapped wasps may imply that about 50 release points per one hectare of tomato would be enough to cover a uniform distribution of parasitoid for effective pest control. Considering the environmental conditions and quality control
measures may also enhance the successful reduction of pest population in biocontrol programs of tomato fruit borer using the tiny friend.

Acknowledgments

This study was part of a project (No. 0-16-1692164) funded by Iranian Research Institute of Plant Protection. Authors are grateful to Mr. Mahrughan who supported the experiments and provided the tomato field.

References

Anonymous, 2004. Quality control standards in mass production of biocontrol agents. Biocontrol Dept., Iranian Research Institute of Plant protection, Protocol no. 12339/220/25 dated 30/12/2004 (In Persian).
Attaran, M. R. 2002. Evaluation of biological attributes of local ecotypes of Trichogramma bracssicae (Hym., Trichogrammatidae) in central and eastern coastal regions of The Caspian Sea. Ph.D. Thesis, Islamic Azad University, Science and Research Branch. Tehran, 155 p .
Bale, J. S., van Lenteren, J. C., and Bigler, F. 2008. Biological control and sustainable food production. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363: 761-766.
Burbutis, P. P., Curl, G. D. and Davis, C. P. 1977. Host searching behavior by Trichogranmma nubilale on corn. Environmental Entomology, 6: 400-402.
Chapman, A. V. 2007. Optimizing Trichogramma ostriniae (Hym.: Trichogrammatidae) releases to control European corn borer, Ostrinia nubilalis (Lep.: Crambidae) in bell pepper. MSc. Thesis, Virginia Polytechnic and State University, Virginia, 71 p.
Ebrahimi, E. 1999. Morphological and enzymatic study of the genus Trichogramma in Iran. Ph. D. Thesis. Tarbiat Modares University, Tehran, 149 p.
Fournier, F. and Boivin, G. 2000. Comparative dispersal of Trichogramma evanescens and T. pretiosum (Hym; Trichogrammatidae) in
relation to environmental conditions. Environmental Entomology, 29: 55-63.
Greatti, M. and Zandigiacomo, P. 1995. Post release dispersal of Trichogramma brassicae Bezdenko in corn fields. Journal Applied Entomology, 119: 671-675.
Hassan, S. A. 1994. Strategies to select Trichogramma species for use in biological control. In: Wajnberg, E. and Hassan, S. A. (Eds.), Biological Control with Egg Parasitoids. CAB International, Wallingford, pp 55-71.
Hoffmann, M. P., Wright, M. G., Pitcher, S. A. and Grander, J. 2002. Innoculative release of Trichogramma ostriniae for suppression of Ostrinia nubilalis (European corn borer) in sweet corn field: biology and population dynamics. Biological Control, 25: 249-258.
Hsiao K. J. 1981. The use of biological control agents for the control of the pine defoliator, Dendrolimus punctatus (Lep; Lasiocampidae) in China. Protection Ecology, 2: 297-303.
Kanour, W. W. Jr. and Burbutis, P. P. 1984. Trichogramma nubilale (Hym; Trichogrammatidae) field releases in corn and a Hypothetical model for control of European corn borer (Lep; Pyralidae). Journal of Economic Entomology, 77: 103-106.
Kuhar, T. P., Barlow, V. M., Hoffmann, M. P., Fleischer, S. J., Groden, E. A., Grander, J., Hazzard, R., Wright, M. G., Pitcher, S. A. and Westgate, P. 2004. Potential of Trichogramma ostriniae (Hym.: Trichogrammatidae) as a biological control agent of European corn borer (Lep.: Crambidae) in solanaceous crops. Journal of Economic Entomology, 97: 1209-1216.
Li, L. Y. 1982. Trichogramma sp. and their utilization in people republic of China. Les Colloques de l'INRA, 9: 20-23.
Orr, D. B., Garsia-Salazar, C. and Landis, D. A. 2000. Trichogramma non-target impacts: A method for biological control risk assessment. In: Follet, P. A. and Duan, J. J. (Eds.), Nontarget Effects of Biological Control. Kluwer Academic Publisher, Boston, MA, pp: 111-125.
Pezeshk. R., Shirazi, J., Attaran, M. R. and Shojaee, M. 2010. A study on the searching efficiency of Trichogramma
brassicae Bezd. at three thermal regimes. Proceedings of the 19th Iranian Plant Protection Congress, Tehran, Iran, pp. 43.
Rudd, W. G. and Gandour, R. W. 1985. Diffusion model for insect dispersal. Journal of Economic Entomology, 78: 295-301.
Shirazi, J., Taghizadeh, M., Dadpour, H., Attaran, M. R. and Zand, S. 2010. Investigation on the parasitism level of Ostrinia nubilalis (Hub.) eggs related to different densities of released Trichogramma brassicae Bezd. in corn. Proceedings of the 19th Iranian Plant Protection Congress, Tehran, Iran, pp. 68.
Smith, S. M. 1988. Pattern of attack on spruce budworm egg masses by Trichogramma minutum (Hym.: Trichogrammatidae) release in forest stands. Environmental Entomology, 17: 1009-1015.
Smith, S. M. 1996. Biological control with Trichogramma: advances, successes potential of their use, Annual Review of Entomology, 41: 375-406.
Wang, B., Ferro, D. N. and Hosmer, D. W. 1997. Importance of plant size, distribution of egg masses and weather conditions on egg parasitism of the European corn borer, Ostrinia nubilalis by Trichogramma ostriniae in sweet corn. Entomologia Experimentalis Et Applicata, 83: 337-345.
Wang, B. and Ferro, D. N. 1998. Functional response of Trichogramma ostriniae (Hym.: Trichogrammatidae) to Ostrinia nubilalis (Lep.: Pyralidae) under laboratory and field conditions. Environmental Entomology, 27: 752-758.
Wang, B., Ferro, D. N. and Hosmer, W. 1999. Effectiveness of Trichogramma ostrinia and T. nubilale for controlling the European corn borer, Ostrinia nubilalis in sweet corn. Entomologia Experimentalis Et Applicata, 91: 297-303.
Wright, M. G., Hoffmann, M. P., Chenus, S. A. and Gardner, J. 2001. Dispersal behavior of Trichogramma ostriniae (Hym.: Trichogrammatidae) in sweet corn fields: Implications for augmentive releases against Ostrinia nubilalis (Lep.: Crambidae). Biological Control, 22: 29-37.

مطالعهى پراكنش زنبور Trichogramma brassicae در مزرعهى گوجهفرنگى

$$
\begin{aligned}
& \text { ا- گروه حشر هشناسى، دانشكده كشاورزى، دانشگاه آزاد اسلامى، واحد گرمسار، ايران. }
\end{aligned}
$$

〒 个－آزمايشگاه تحقيقات كنترل بيولوزيك آمل، مؤسسه تحقيقات گياهيزشكى كشور، آمل، ايران．

چحكيده：مطالعهاى بلمنظور تعيين نحوه و ميزان پراكنش زنبور پارازيتوييد Trichogramma

 مربع، \wedge قيُم حوبى

 زرد و تخمههاى پارازيته به تفكيك با با استفاده از استريوميكروسكوپ
 ضريب پخش زنبور（D）براى \＆

 كافى در زمان معين براى كنترل آفت هدف، نقاط رهاسازى متعدى در كوجهفرنینى مورد نياز است．

وازگَان كليدى：كنترل بيولوريك، Helicoverpa armigera، رهاسازى اشباعى، مدل پخش

[^0]: Handling Editor: Dr. Yaghoub Fathipour

 * Corresponding author, e-mail: Shirazi@iripp.ir Received: 9 September 2014, Accepted: 2 December 2014 Published online: 22 January 2015

[^1]: ${ }^{\text {a }}$ Days after release.
 ${ }^{\mathrm{b}}$ Coefficients of the model (Eq. 4).
 ${ }^{\text {c }}$ Diffusion coefficient (Eq. 5).
 ${ }^{\text {d }}$ Distance encompassing 98% of population (Eq. 6).
 ${ }^{\mathrm{e}}$ Mortality / emigration rate (Eq. 7).
 ${ }^{\mathrm{f}}$ Number of wasps remained at certain time (Eq. 8).
 *Calculated based on Eq. 9.

